時空 解 さんの日記
6月
10
(木)
カテゴリー
数学検定
皆さんこんにちは、時空 解です。
さて、昨日会社の休日を利用して今度の土曜日に迫った「提携会場受検」の会場の下見に行ってまいりました。
いやはや、時間が掛かるのは分かっていたのですが、それよりも何よりも辿り着くのに戸惑いましたね。
自動車にナビが付いているとは言え、回り道を余儀なくされてしまったんです。
下見に出掛ける時は
「高速道路に入る時に "ETCカード" がちゃんと使えるかなぁ…」
なんて思っていただけなんです...
6月
9
(水)
カテゴリー
数学
皆さんこんにちは、時空 解です。
数学の学習をしていて、いつも気になっている計算間違い…。
私は良く2桁の足し算・引き算を間違えてしまいます。
暗算をする時はいつも子供の頃に獲得したであろう、筆算からのイメージを使って暗算しています。
まぁこの説明では、さて? 頭のなかでどうやって数字を足し引きしているのかは伝わるはずもありませんが…それはさておき。
今日の朝は、頭の中でそろばんを動かして暗算をしてみました。そろばんを思い浮か...
6月
8
(火)
カテゴリー
数学検定
皆さんこんにちは、時空 解です。
今日の朝、「実用数学技能検定要点整理2級」をやっていたら下記の問題に出くわしました。
p42 応用問題 2次 1
座標平面上の3点 $ O(0,0),~A(0,-1),~B(2,5) $ を頂点とする $ \triangle OAB $ の面積を求めなさい。
うーむ…これを座標平面上に書き込むと右図のようになります。
この三角形の面積と言えば一目瞭然!
底辺を $ OA $ と見れば、三角形の高さ...
6月
7
(月)
カテゴリー
数学検定
皆さんこんにちは、時空 解です。
今日は「三角関数の合成」の理解に切を付けて、次の学習に進む事にしました。数学検定の2級2次に合格するには Geogebra で遊んでいる場合ではありませんね。( ^^;
さて、今日は「点と直線の距離」について考えていました。
点と直線の距離を求めるには、下記の公式を利用すれば良いのですが、以前は数学検定のためにただ記憶していただけでした。
点 $ (x_1,y_1) $ と直線 $ ax + by + c = 0 $ の距...
6月
6
(日)
6月
5
(土)
6月
4
(金)
カテゴリー
数学
皆さんこんにちは、時空 解です。
ちょっと今日は時間が無くなってしまったので、解説が書けなくなってしまったのですが…
「三角関数の合成」について、下記の関係が成立していることに皆さんはお気付きでしたでしょうか?
$ a \cdot \sin \theta + b \cdot \cos \theta = \sqrt{ a^2 + b^2 } \cdot \sin{ ( \theta + \alpha ) } $
の時に...
6月
3
(木)
6月
2
(水)
6月
1
(火)
カテゴリー
数学
皆さんこんにちは、時空 解です。
$ \sin \theta $ と $ \cos \theta $ を一つの三角比、例えば $ \sin $ のみとか $ \cos $ のみとかで表す方法として「三角関数の合成」と言うのがありますよね。
これは一つの数式に2つの三角比が入っていると扱いにくいので、一つにまとめるテクニックなのですが、なかなか覚えにくいです。
数学検定2級2次でも必衰のテクニックなのですが、いつも不安でした。
でも、今回初めてキッチリと理解した...