TOP

Home  >  ブログ  >  時空 解

時空 解 さんの日記


 高度な検索
3194件のうち1601 - 1620件目を表示しています。


[投稿日   ] [タイトル   ] [アクセス数   ]
7月
20 (月)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 今日は青チャート式数学Iの重要例題87まで学習したいと意気込んでいたのですが、やっぱり息切れがして挫折しました。後7問学習すれば、基本 (重要) 例題の No.1 から No.132 まで繋がるのにね。自分が高校生だったらムキになって繋げようとしているところでしょう。でももう私も若くはないですからね…。(あくまでも年寄りではない  ) 今日の朝に出来た問題数は5問…やっぱり少ないです...
続きを読む | 閲覧(4438) 
7月
19 (日)
カテゴリー  未分類
皆さん、おはようございます。時空 解です。 (今日はただのボヤキです…ご了承ください) 今日は久々に朝起きたのが8時ちょうどになってしまいました。仕事の出掛けるには何の問題も無いのですが、いささか調子が狂いますね。 最近は仕事が忙しくて疲れています…1時間の早出と、30分程度の残業もなかなか身体にはこたえます。やっぱり若い時のようには行きません。 たかが30分の残業なんですけどね。 20代30代の頃は毎日3時間の残業は当たり前...
続きを読む | 閲覧(4969) 
7月
18 (土)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 青チャート式数学Iの基本例題78をやっていました。 この問題で迷いました、最大値・最小値の「ある・ない」の判断を、です。 特に迷った理由は変数 $ a $ が定義域に出てくる点です。ここで問題文を下記に書いてみますね。 基本例題78 $ a $ は正の定数とする。定義域が $ 0 \leqq x \leqq a $ である関数 $ y = x^2 - 4x + 1 $ の最大値および最小値を、次の各場合について...
続きを読む | 閲覧(5050) 
7月
17 (金)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 対称式と言うのがありますよね。2変数 $ x $ と $ y $ の対称式 $ x^n + y^n $ の場合、$ x $ と $ y $ を好感してももともとの式と変わらないと言うものです。 この対称式は基本対称式 $ x + y ,~ xy $ の2つで表すことが出来ると言う特徴がありましたよね。参考書には必ず出ていることです。 でもこの特徴って、何の役に立つんでしょうかね? 「対称式を基本対称式で表す等式」...
続きを読む | 閲覧(4833) 
7月
16 (木)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 7月12日にもご紹介した重要例題68ですが、やっとこの問題を解くことが出来ました。 やれやれです。とりあえず重要例題68を下に示しておきましょう。 自分のブログを検索してみたら、案の定、3年前にも重要例題68に付いての投稿をしていました。 ・f( f(x) ) と言う関数に要注意。 内容を読んでみてビックリです。 酷い内容だ… 前半分部では、問題の $ x $ を時間、$ y $ を距離...
続きを読む | 閲覧(4810) 
7月
15 (水)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。 今日は朝一番でメールが届いていました。まぁいつも朝一番でメールチェックはするのですが、宣伝関連ばかりですからね、スルー出来るのですが。 友人のものとなると気持ちが入ります。 それに友人からの便りほどではないでしょうが、自分がアップした YouTube 動画にコメントなどが付くとそれなりに気持ちが入るものです。朝一番でそんなふうに気持ちが入ると、やっぱり数学の学習に影響します。 この体験は、自己啓発本に共通して書かれていた...
続きを読む | 閲覧(3978) 
7月
14 (火)
カテゴリー  未分類
皆さん、おはようございます。時空 解です。 数学の学習をするのに適しているのは、きっとストーンペーパーで造られているノートでしょう。いろいろな意見もあるかと想いますが、デジタルペーパーなどの電子機器によるノートよりは良いと想います。 さて、ストーンペーパーを使ったノートとして代表的なのは2つあります。 ・HOMESTEC スマートノート A4サイズ 無限ノート 消せる手帳 デジタル メモ ルーズリーフ おもしろ 文房具 無限に使えるノート ・【全米記録超え】半...
続きを読む | 閲覧(5536) 
7月
13 (月)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。 7月10日以降、青チャート式数学の学習は2次関数のところに進んできました。この2次関数のところ、今年の3月、4月のころに自分なりに学習をしていたところです。ですから3、4ヶ月前に学習したところ…その問題を7月10日以降に再度解きなおしているところです。 現在までに8問解いたんですよね。それで一発で解けた問題が2問…。悲し過ぎる。 でもね3月、4月のころの学習方法は自分なりの学習方法。一度...
続きを読む | 閲覧(4714) 
7月
12 (日)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 昨日は青チャート式数学Iの重要例題68に四苦八苦していました。以前はこの例題をみて 「はっはーん。入れ子になっているんだな」 と直ぐに分かった気になったのを覚えているのですが、いざ数式にしてみようと考えたら四苦八苦…出来ません、分かりません。 それでネット上にあるかも知れない動画を検索してみたら、見付けました。 数研出版さんの動画なんですが…。 ・学校休業期間における学習支援ICT...
続きを読む | 閲覧(5662) 
7月
11 (土)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 1次方程式をなめていました。 $ y = ax + b (1 \leqq x \leqq 2 ) $ と言う関1次関数の値域が $ 3 \leqq y \leqq 5 $ となるときの、定数 $ a,~b $ の値を求める問題。皆さんはお分かりですかね? 私は直ぐに (1) $ x = 1 $ の時に $ y = 3 $ で、 $ x = 2 $ の時 $ y = 5 $ だから、この連立方程式を解けば良いと考えま...
続きを読む | 閲覧(4347) 
7月
10 (金)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 証明するってどういうことなのか疑問になってきました。青チャート数学Iの例題60という問題があります。 これは背理法を使って $ a + b\sqrt{ 2 } $ ならば $ a = b = 0 $ であることを証明する問題なんですが、その証明がなにやらスッキリしません。まぁ今では「これが正しいんだなぁ…」と何となく分かってはきてますけどね。 …でもね。 何となく分かってき...
続きを読む | 閲覧(5171) 
7月
9 (木)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 $ \sqrt{ 7 } $ が無理数であることを証明する問題があるのですが、これは背理法を使った証明問題として有名なんだそうです。 証明のポイントとしては $ \sqrt{ 7 } = \displaystyle \frac{ a }{ b } $ とおいて、$ a $ と $ b $ とが互いに素 (既約分数) であることを利用することと、自然数 $ n $ を $ n^2 $ した値が $ 7 $ の倍数ならば $ n...
続きを読む | 閲覧(4952) 
7月
8 (水)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。 今まで使っていたキーボードスタンドはちょっと違和感があったので、また一から作り直してみました。昨日丸一日掛かってしまったのですが、前回よりは良い物に仕上がったつもりです。 今現在、こうしてブログを書くのに使っています。 …まずまずですかね。 (すいません、キーボードスタンドの写真をアップすればいいのですが時間が取れません。ごめんなさい) 欠点は直ぐに腰掛から立ったり座ったりすることが出来ない点です。...
続きを読む | 閲覧(4062) 
7月
7 (火)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 数学の命題を証明するために、間接証明法として、対偶を取ったり背理法を使ったりしますよね。 青チャート式数学の例題では「対偶による証明」とか「背理法で証明せよ」とか書かれているのでいいのですが、実際に物理数学の世界で何か命題が出てきたらどう対処すれば良いのかなぁなんて、ちょっと考えてしまいました。 命題を直接証明できそうにない時、果たしてどちらを使うか? 対偶?それとも背理法? うーむ…    おっと...
続きを読む | 閲覧(5331) 
7月
6 (月)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 数学の "命題と条件" と言う項目の学習をしていると、大抵が「対偶」と「背理法」とが一緒に解説されていますよね。 例えば「青チャート式数学I 第7節:命題と証明」では、基本事項と言うところに同じページに解説が載っています。ちゃんと読めば「逆・対偶・裏」と「背理法」とが別扱いで解説されていることが分かりますが…。 お恥ずかしい話「同じページで解説がされている」と言う印象が私には強くて...
続きを読む | 閲覧(4456) 
7月
5 (日)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 今日の今日まで勘違いをしていた日本文があります。下記の二つ、私は同じ意味かと思っていたんです。 ・「任意の $ x $ について $ p $」 ・「適当な $ x $ について $ p $」 でも「任意の」と「適当な」は違うんですね。 私は両方とも「複数の内の一つ」と言う感覚で使っていました。まぁこの感覚は間違いではないと思いますが…。 「任意の $ x $ について」と…任意...
続きを読む | 閲覧(4069) 
7月
4 (土)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。 数学の学習をしていて、今日の朝気が付いたことがありました。自分は正解しようとしているんですよね。「考え方が覚えよう・理解しよう」と言う姿勢ではないんです。 とくに今日学習していた問題が命題のところで ・「すべて」「ある」の否定 ・「ならば」の否定 と言う問題でした。 この問題は日常生活で人と会話をする時に使っている「すべて」、「ある」、「ならば」と "否定" と関係を持ち込んで正解を出そうとす...
続きを読む | 閲覧(4049) 
7月
3 (金)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。 数学の学習のやり方を「数強塾ふじわら塾長」にしてから、とても数学の学習が辛いものになっています。 と言うのも、間違えた問題は答が合うまで次の日も次の日も解き直さないといけないからです。 今まで学習方法だと「あ、こう解くのか…」と解法を眺めたらもう次に進んでいましたからね。でもこれが成績が上がらなかった原因ですけどね…こんな学習方法を取っていると数ヶ月後には一度解いたハズの問題文自体も忘れてし...
続きを読む | 閲覧(3772) 
7月
2 (木)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。 以前、数学検定1級に合格した最年少者「安藤匠吾(しょうご)君(9)」のことをご紹介しましたよね。まぁ紹介したと言うよりは、合格最年少者のことを扱っている動画と記事をご紹介しただけのことですが…。 ・数学検定1級に9歳で最年少合格した少年に会ってきた話 この記事に感銘してヨビノリさんのサポートをしたのです。サポートと言うと具体的には支援金を投じたと言うことで、お食事が出来る程度のものです。 支援金を投...
続きを読む | 閲覧(4053) 
7月
1 (水)
カテゴリー  数学
皆さん、おはようございます。時空 解です。 チャート式数学の集合の問題で、重要例題48と言うのがあります。 この問題の難しいところは、どうやって証明すれば良いのか? …これに尽きます。 この証明方法がとても重要なんですが、以前学習したはずなのにトント覚えていないんですよね。 きっと証明に利用している集合の基本事項を、私はなめていたのですね。 「こんなの基本事項として取り上げるまでもない」 なんて思っていたのです。 でもこの重...
続きを読む | 閲覧(4252) 
3194件のうち1601 - 1620件目を表示しています。

 
メインメニュー
ログイン
ユーザー名:

パスワード:



日記投稿者リスト
カレンダー
«前の月次の月»
12
3456789
10111213141516
17181920212223
24252627282930
月表示
カテゴリー
にほんブログ村リンク