TOP

Home  >  ブログ  >  時空 解

時空 解 さんの日記


 高度な検索
3245件のうち1741 - 1760件目を表示しています。


[投稿日   ] [タイトル   ] [アクセス数   ]
4月
22 (水)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   チャート式の数学を学習し始めて早3年が立ちます。 3年間と言えば高校を入学してから卒業をする期間ですよね。 でも、いまだに数学の実力は伸びていません。やっぱりどこか学習方法に問題があるのでしょう。   学習をしていて、自力では解けない例題や、解説を読んでも理解できない例題に出くわすとドンドンと時間だけが過ぎて行きます。次の例題に進められないんですよね。それが原因だとは分かっているのです...
続きを読む | 閲覧(6948) 
4月
21 (火)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。   新型コロナ・ウィルスの影響で全国の小中学校、高校・大学までもが休校せざる負えない状況になっています。 ・大学、急ごしらえオンライン講義 学費の返還求める声も   オンライン講義などが急がれているなか、小学生の自宅内での時間の使い方が問題視されてきています。 そんな中、時間割の作成が注目されているようです。 ・長期休暇を乗り切る「時間割」の作り方   私も小学生に負けない...
続きを読む | 閲覧(6387) 
4月
20 (月)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。   新型コロナ・ウィルスの影響が凄いですね。私の務め先もついにその影響が具体的に出て来ました。 詳細をブログに書くわけには行きませんが、作業者の人数は減らす必要が出てきていることは事実です。   さて、会社に必要ではない社員とはどんな社員なんでしょうかね?   数学の勉強を「毎日の習慣」にしようと思っているのですがなかなか出来ない…そんな私がふと想ったダメ社員の定...
続きを読む | 閲覧(6223) 
4月
19 (日)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。   新型コロナ・ウィルスの影響で、世界大恐慌に匹敵する不況にみまわれると予想される事態が起きています。先行きとても不安ですね。 感染者数は日本では対数的に増えていないものの、右肩あがりです。 普段から不要不急の外出はあまりしない私ですが、買い物も2回を1回にまとめるとか、外食は馴染みの所のみとするなど、工夫をしてゆきたいと思っています。   ところで、自宅で過ごす時間が増えて、数学の学習をする...
続きを読む | 閲覧(5778) 
4月
18 (土)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   書籍「【完全版】天才ガロアの発想力」や「ガロア理論の頂を踏む」などの書籍が読み進められない私です。 ですので、もっと基本的なこと、例えば分数とか基本的な四則演算に学習を広げているのですが、驚いたことがあります。   割り算の余り計算に付いてです。   正の数を正の数で割る場合には問題は起きません。 でも負の数を正の数で割る時に、ハテ? と考えてしまいました。  ...
続きを読む | 閲覧(6147) 
4月
17 (金)
皆さん、おはようございます。時空 解です。   昨日動画をアップしました。今回はシグマと数表作成機能を使っています。 ・fx JP900 030 シグマ記号でバーゼル問題を垣間見よう!   まぁシグマ記号を使うに当たって、自然数の逆平方数 $ \displaystyle \frac{ 1 }{ 1^2 } + \frac{ 1 }{ 2^2 } + \frac{ 1 }{ 3^2 } + \frac{ 1 }{ 4^2 } ...
続きを読む | 閲覧(6830) 
4月
16 (木)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   バーゼル問題と言うのがあるのですが、皆さんもご存知のことでしょう。このブログでも以前ご紹介したことがあります。 でもバーゼルと言うのはこの問題を提起した人物の名前ではないんですよ。地名なんです。これは押さえておいた方がいいでしょう。   バーゼル問題は1644年に ピエトロ・メンゴリと言うイタリアの人が提起しました。 「全ての自然数を1から順に平方の逆数にして足し合わせて行くと、いくつ...
続きを読む | 閲覧(6401) 
4月
15 (水)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   この3日間ほど、ユークリッドの互除法に悩んでいました。 ユークリッドの互除法と言うのは、2つの自然数の最大公約数を求める方法です。Wikipedia によると「明示的に記述された最古のアルゴリズム」とも言われているそうなんですが、その定式化された解法手順を行うと、どうして最大公約数が求められるのか? その証明に悩んでいたんです。   ここで「ガロア理論の頂を踏む」と言う書籍から、その証明を引...
続きを読む | 閲覧(6450) 
4月
14 (火)
カテゴリー  未分類
皆さん、おはようございます。時空 解です。   昨日、アマゾンからメールが届いていました。"置き配指定" と言う内容です。   これはちょっとビックリしました。きっと新型コロナ・ウィルスの影響で業務に支障が出て来たのでしょう、再送業務の削減が目的なのだと思います。    想い出してみると、私が若い頃は宅配なんてサービスは郵政省しか行っていませんでした。郵便小包は留守の時には玄関に置きっ放し、と言う...
続きを読む | 閲覧(7550) 
4月
13 (月)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。   今日は朝から分数の計算に四苦八苦していました。 チャート式の数学の問題を解いていて、どうしても計算ミスが多いんです。この対策としては「そろばんの練習をする」と言うことを少なからず実行しているのですが…一向に改善される気配はありません。 でも、まぁそりゃあそうです。未だにそろばんが頭の中に入っていませんからね。   それに計算ミスをする部分は決まってプラスマイマスの取り間違えと...
続きを読む | 閲覧(6051) 
4月
12 (日)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。   ネット上に載っている数学サイトや数学関連の YouTube を視聴すると、なるほど勉強にはなりますが、いざ実際に問題が解けるようになるかと言うと、なかなかそうも行きませんね。考え方を理解する手助けにはなるのですが、いざ問題を解く段階になると、やっぱり 「あれっ?どうだったかな」 と言うことになります。問題を解く試みをして初めてサイトの内容の本当に意味や動画のポイントが見えたりします。   ...
続きを読む | 閲覧(5831) 
4月
11 (土)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   ユークリッドの互除法を調べていて芋ずる式に出て来た言葉があります。 「一次不定方程式」…。? こんな方程式は聞いたことが無かったのですが、ネットで検索してみると多くの解説サイトがヒットしますね。例えば下記のサイト。 ・一次不定方程式ax+by=cの整数解   動画もいろいろありますね。やっばり有名で、しかもイメージがつかみにものなのでしょう、一次不定方程式。 &n...
続きを読む | 閲覧(5801) 
4月
10 (金)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   ユークリッドの互除法というのがありますが、この証明があまりピンときません。 参考になるサイトを下に示しておきます。 ・ユークリッドの互除法まとめ(証明・最大公約数・不定方程式)       2. ユークリッドの互除法の証明   上記のサイトを観て頂くと分ると思いますが、、ユークリッドの互除法というのは、例えば二つの自然数の最大公約数を求める時に使います。   ...
続きを読む | 閲覧(6051) 
4月
9 (木)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   書籍:【完全版】天才ガロアの発想 を読んで を読み進めているのですが、早くも挫折しそうです。それは p44 に出てくる節 ・体 $ Q( \sqrt{ 2 } ) $ の自己同型は他にもあるか?   この節の始めの部分に 有理数の拡大体 $ K $ の任意の自己同型を $ f $ とします。  すると、「 $ 0 $ が $ f $ によって $ 0 $ に対応する」ことがわかり...
続きを読む | 閲覧(5223) 
4月
8 (水)
カテゴリー  パソコンソフト関連
皆さん、おはようございます。時空 解です。   今日も朝から数学に関する YouTube 動画を観ていました。 数学の学習にはチャート式の数学ばかりを頼りにしていたのですが、動画を観るのも楽しいですね。   今日の朝は下記の動画を観ていました。 ・Why is pi here? And why is it squared? A geometric answer to the Basel problem     ...
続きを読む | 閲覧(6677) 
4月
7 (火)
カテゴリー  夢に向かって
皆さん、おはようございます。時空 解です。   新型コロナ・ウィルス (COVID-19) の影響で、直接の影響を初めて感じる事態になりました。 ・2020年4月12日(日)検定の中止について【4月6日16:00更新】   マスクが手に入り難いとか、買い占めの心配とか、新型コロナの影響は大きいものがありますが、上記のお知らせに付いても毎日の生活に直結した事態です。 「こんな状況でも検定は実施するのかなぁ…」 と危惧してい...
続きを読む | 閲覧(6195) 
4月
6 (月)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   皆さんは解析接続をご存知でしたでしょうか? 恥ずかしながら私は昨日知った次第です。   昨日、オイラーが導いたとされる素数に関する美しい式に付いて、fx-JP900 でちょっと計算してみようと思ったんですよね。 それでちょっと調べていたら $ \zeta (s) $ が出てきてね。これが $ \zeta (s)=\displaystyle { \displaystyle \frac{...
続きを読む | 閲覧(6169) 
4月
5 (日)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   今日も書籍:「【完全版】天才ガロアの発想」を読み進めていますが「自己同型」がなかなか腑に落ちない私です。 ここまでの書籍の内容を振り返ってみると、随分と読み落としがあることが分かりました。間違えて解釈しているところも多々ありました。 単純な四則演算をごちゃごちゃやっているだけの内容と思えますが、その "ごちゃごちゃ" の部分をキチンと理解して行かないといけません。   ...
続きを読む | 閲覧(5453) 
4月
4 (土)
皆さん、おはようございます。時空 解です。   昨日、今日と動画を1つづつアップしました。   ・fx-JP900 028_覚えておきたい組合せの公式   ・fx-JP900 029_ガウス記号をマスターしよう!   ガウス記号をマスターしよう、の方は動画作成ソフトの誤動作のため音声が小さくなってしまいました。 少し音量を上げて視聴してみて下さいね。 では今日は簡単ですからここ...
続きを読む | 閲覧(5612) 
4月
3 (金)
カテゴリー  数学
皆さん、おはようございます。時空 解です。   今日は朝から表題の数式 ・$ [ Q ( \sqrt{ 2 },\sqrt{ 3 } ) : Q ] = [ Q ( \sqrt{ 2 },\sqrt{ 3 } ) : Q ( \sqrt{ 2 } ) ] × [ Q ( \sqrt{ 2 } ) : Q ] = 2 × 2 = 4 $   をちゃんと理解することに時間を使っていました。   うーむ...
続きを読む | 閲覧(5501) 
3245件のうち1741 - 1760件目を表示しています。

 
メインメニュー
ログイン
ユーザー名:

パスワード:



日記投稿者リスト
カレンダー
«前の月次の月»
1234
567891011
12131415161718
19202122232425
262728293031
月表示
カテゴリー
にほんブログ村リンク