時空 解 さんの日記
7月
11
(火)
3月
8
(火)
カテゴリー
数学
皆さんこんにちは、時空 解です。
今日も朝から剰余の定理と因数定理のところを学習していました。それで、やっぱり考え方が難しいところがあります。
難しいのは、やっぱり割り算の等式と余剰の定理の関係でしょうか?
難しいポイントとして、右画像に示すように「青チャート式数学II」の基本例題53が参考になると思います。また、この例題に伴う
「ズームUP 余りを求める問題に関しての補足説明」
の部分が役に立つと思います。
右画像に、バックが赤くなっている部分が...
11月
8
(木)
12月
7
(金)
2月
15
(金)
11月
21
(水)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
今日はマスペディアのトピック 169番目のご紹介です。フェルマー素数に付いて書かれています。
フェルマー素数と言うのは結構有名なのではないでしょうか。フェルマーが "この形の数はすべて素数かも知れない!?" と予想したものです。
この予想は残念ながら外れていましたけどね。
フェルマーが後世に残した予想は、かなりの確率で当たっている事の方が多いそうなので、この予想は外れていることで有名な...
続きを読む
| 閲覧(6972)
6月
8
(火)
カテゴリー
数学検定
皆さんこんにちは、時空 解です。
今日の朝、「実用数学技能検定要点整理2級」をやっていたら下記の問題に出くわしました。
p42 応用問題 2次 1
座標平面上の3点 $ O(0,0),~A(0,-1),~B(2,5) $ を頂点とする $ \triangle OAB $ の面積を求めなさい。
うーむ…これを座標平面上に書き込むと右図のようになります。
この三角形の面積と言えば一目瞭然!
底辺を $ OA $ と見れば、三角形の高さ...
3月
16
(土)
10月
7
(水)
4月
24
(土)
9月
4
(日)
7月
22
(金)
7月
7
(金)
12月
8
(金)
1月
11
(火)
カテゴリー
数学検定
皆さんこんにちは、時空 解です。
今日は「数値代入法」で解くのが良いであろう問題を扱ってみます。数検で出題された問題を、昨日のコメント欄に書き込んで頂けました。ここのブログの会員さんからです。
会員さまへ。問題を教えて頂きありがとうございます。いつも感謝しています。m( _ _ )m
さて、問題は数学検定の準1級1次に出題された問題だそうです。下記にそれを示します。
問題
次の等式が $ x $ について恒等式となるように、定数 $ a,...
1月
5
(水)
カテゴリー
数学
みなさん、こんにちは。時空 解です。
今日は「青チャート式数学II」の基本例題12の設問 (1) をやっていて、高校時代のことを想い出しました。
「こんな状況になる分数、いったいいくつ出てくると言うのだ!」
分部分数分解をしなくてはならないような状況なんて殆ど無いと、高校時代には思っていました。
でも数列とか漸化式を行う時に出てくるんですよね。
今ではそんな察しが、とりあえず付きます。
でも高校時代には「下記の分数の変形を覚えておきましょう」な...
8月
19
(土)
11月
9
(金)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
マスペディアの 164 ~ 166 までのトピックは双子素数に代表されるような、間隔についての記事が載っています。
でもねぇ…これはなかなかピンとこないんですよね。ピンとこないと言うか、ちょっと興味が湧かない、と言う方が正しいでしょうかね。
ですが、トピック 167 の "ディリクレの定理" と言うのは興味が湧きます。
等差数列と素数の関係を考察しているのですよ。初項と交...
続きを読む
| 閲覧(6983)
7月
12
(水)
3月
2
(金)