日記一覧
当サイトに登録されている日記一覧9月
12
(水)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
今日もマスペディア 1000 からの話題です。素数が無限に存在していることの証明がトピックス 150 番目に出て来ます。
素数が無限に存在している事は皆さん、もうご存知のことですよね。
でも、その証明をいつ知りましたか? …もしかして、ご自分で証明出来たとか…そうであれば尊敬に値します。
私は素数が無限に存在すると言...
続きを読む | 
閲覧(3773)
9月
10
(月)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
マスペディア 1000 の第149 番目のトピックにいよいよ素数が出て来ました。
数学の学習をしていると必ず出くわす、素数と言う数字。中学の頃はこの数字に挑んだものです。
「素数方程式をみつけよう!」
とね。
若気の至りです いま考えると、気が狂っていますよね。
でも考え方によっては、素数をすべて書き出す方程式について夢想出来ていたのですから、幸せだったのかも知れません。
学生の頃、素数に...
続きを読む | 
閲覧(3941)
9月
3
(月)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
今日は久々にマスペディアからの話題です。
トピックの 148 番目に abc 予想 と言うのが出て来ます。この予想の意味もなかなか取っつきにくいのですが…。
マスペディア トピック 148 の一部より
1985年に、ジョゼフ・オステルレとデイヴィッド・マッサーがフェルマーの最終定理、カタラン予想(ミハイレスクの定理)、その他の数論におけるたくさんの問題を一般化するであろう予想を立てた...
続きを読む | 
閲覧(4262)
8月
5
(日)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
数学検定の2級を学習をしていると時々出て来ました、この演算 $ 2^3=8 $ と $ 3^2=9 $ 。
この2つの数字をみて、皆さんは何かピン来たでしょうか?私は何も感じませんでしたけどね。
$ 8 $ と $ 9 $ は、特に指数・対数の問題を解いている時には出て来ますよね。頻繁に $ 2^3=8 $ と $ 3^2=9 $ と言う演算をやるはずです。
でも、この2つの数字 $ ...
続きを読む | 
閲覧(5034)
5月
14
(月)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
マスペディアの第144番目のトピックは "ワイルズの定理" と言う題名で書かれたいます。
ワイルズの定理と呼ばれているものがどんな定理なのか今までハッキリとは知りませんでしたが、今日の朝、明確に認識をしました。
フェルマーの最終定理を明確に理解した、と言う意味ではありませんよ。
( まぁそんな勘違いは誰もしませんかね… )
ワイルズと言う名はもちろん...
続きを読む | 
閲覧(4094)
4月
25
(水)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
マスペディアの 140 から 143 のトピックにフェルマーの名前が2回でてきます。フェルマーの多角数定理とフェルマーの最終定理です。
フェルマーの最終定理と聞いて思い出すのが「私は本当に驚くべき証明を発見した。しかし余白が狭すぎて書くことはできない」と言うディオファントスの算術に書かれたフェルマーのメモですよね。
これって、この最終定理にだけ出てくる言い回しとばかり若い頃の私は思っていましたが、実はそうじ...
続きを読む | 
閲覧(3895)
4月
24
(火)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
ここのところ夜寝るのが遅くなってしまい、1日中スッキリしなかった私ですが、昨日、一昨日と夜更かしせずに寝たので、やっと今はスッキリとしております。自分はかなり睡眠不足に弱いです。それに1日だけでは調子が戻りません、2日つづけてちゃんと寝た今日になって、やっと調子が戻ってくる次第です。
これも歳ですかねぇ…。
さて、今日はスッキリしたところでひさびさにマスペディアを開いてみま...
続きを読む | 
閲覧(3835)
3月
9
(金)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
久々にマスペディアを開いてみました。今日はトピック 137:2平方定理と 138:4平方定理に付いて書いてみたいと思います。
この2つの定理の証明などに付いてはウィキペディアに載っていますので、そちらを参照して頂くとしまして…。
と言うのも、整数論は私には細かすぎて理解に苦しむのですよね。
数学アレルギーと言う言葉がありますが、こと整数論に付いては、その気持ちが分ってきた次第です。
&nb...
続きを読む | 
閲覧(4693)
2月
25
(日)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
今日はマスペディアのネタを使ってブログを書こうと思ったのですが、いささか困ってしまいました。
前回の続きとなると、今回のトピックは 135 になるのですが、これがどうにもピンとこない内容です。
オイラーのレンガ、と題されているのですけどね。
ちなみに "オイラーのレンガ" と言う文字で Google 検索を掛けてみると、約 19,700 件 がヒットします。
でもこれって大し...
続きを読む | 
閲覧(5362)
1月
22
(月)
カテゴリー
マスペディア 1000
皆さん、おはようこございます。時空 解です。
昨日は早く寝たのですが、今日の朝は寝坊してしまいました。きっと昨日の夜に頭を使い過ぎてつかれたのでしょう。
と言うのも昨日の夜、ブログの下書きを書こうと思って書籍「マスペディア 1000」の第127 ~第134 のトピックスを読んでいたのですが…いつの間にか難しい内容がさらっと出てくるようになっています。まともに考えてしまうと、とても時間が足りません。
そんな理由で、昨日の夜はこれらのトピッ...
続きを読む | 
閲覧(4941)
1月
9
(火)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
マスペディア 1000 の第121番目のトピックから、内容は数論に入って行きます。これより前のトピックは幾何学に付いてのトピックだったので、どこかで聞いたことのあるような内容が多かったのですが、この第121番目:数論、から第126番目:平方剰余の相互法則までの間に、なじみのない事柄が出て来ます。ですので学生時代でしたら、ワクワクしていることですけどね。
でも、昨日はおかしかったんですよね。ワクワクできなかった...
続きを読む | 
閲覧(3991)
1月
5
(金)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
今日はマスペディアのトピック 121 に紹介されていた プリンプトン 322 と言う粘土板に付いて書いてみたいと思います。
みなさんは プリンプトン 322 と言う粘土板をご存じだったでしょうか?
紀元前1800年頃のバビロニア数学に関する物なのだそうですが。
この粘土板を例えばどこかの遺跡から掘り出したとして、興味が持てるでしょうかね?たしかに一見するとなにかが整然と記されている印象があって目を引き...
続きを読む | 
閲覧(4642)
1月
4
(木)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
ピエール・ヴァンツェルに付いては、以前にもここでご紹介しましたが、改めてすごい数学者だったんだなぁと思います。何千年も未解決のままだった問題、角の三等分や立方体の倍積問題に対する解答を見出したのですから。問題解決に掛かった年数だけから見ると、フェルマーの最終定理がアンドリュー・ワイルズの手によって証明されたのは360年後の事ですから、これよりもすごい、と言えるのかも知れませんね。
( まぁそんな比...
続きを読む | 
閲覧(3954)
1月
3
(水)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
マスペディア 1000 の書籍の第118番目のトピックは "円積問題の近似的解法" と題されていて、その中に π の近似値が示されています。この数値は「πの歴史」と言う書籍の中にも出てきていましたが、このブログではご紹介していなかったと思いますので、ここでご紹介しておきましょう。
これを見つけたのが、以前にもご紹介したインドの数学者、ラマヌジャンです。いったいどうやって...
続きを読む | 
閲覧(4728)
12月
27
(水)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
古代ギリシャからある円積問題と呼ばれるものを皆さんもご存知でしょう。円が与えられた時に、その円と同じ面積を持つ正方形を作図する事が出来るか否か、と言う問題です。
この問題が「作図不可能である」と言う結論が出たのは、1882年なのだそうです。リンデマン - ワイエルシュトラースの定理によって、π が超越数であることが示させたからだそうです。
与えられた円の半径が 1 だった時のことを考えると、そ...
続きを読む | 
閲覧(5738)
12月
26
(火)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
マスペディア 1000 と言う書籍の第113番目に「正方形と正五角形を作図する」と言うトピックが出て来ます。このトピックによると、有名な古典的名著、ユークリッド『原論』に正方形の作図方法、そして正五角形の作図方法が記されている事がわかります。
正方形はユークリッド『原論』の命題1.46 に記載されているのだそうです。でも正五角形はどこに記載されているのかは、明記されていませんけどね。でも、とにかくこんなふ...
続きを読む | 
閲覧(6134)
12月
22
(金)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
今日は久々に数学のトピックを1000個集めてある書籍「マスペディア 1000」のトピック 105 - 111 に付いて書いてみます。
この 105 - 111 のトピックは図形に関するトピックです。トピック1つ1つの題名は下記のとおり。
105:線分を2等分する
106:平行線を作図する
107:線分を3等分する
108:有理数長の直線
109:角を2等分する
110:角を3等...
続きを読む | 
閲覧(6235)
11月
29
(水)
カテゴリー
マスペディア 1000
みなさん、おはようございます。時空 解です。
今日はマスペディア 1000 と言う書籍から、104番目のトピック "定規とコンパスによる作図" に付いて書いてみます。
この 104番目に書かれているトピックには1人の数学者が紹介されています。ピエール・ヴァンツェルと言う人です。19世紀に活躍したフランスの数学者なのですが、みなさんはご存知でしたか?私は始めて聞く名前の人でした。
でもこの人の業績を知って驚きました。
...
続きを読む | 
閲覧(5880)
5月
7
(火)
カテゴリー
マスペディア 1000
皆さん、おはようございます。時空 解です。
ここのブログでは時々、書籍「マスペディア 1000」のトピックを順に取り上げて話題にしています。
前回は5月6日にトピック 177番目と 178番目を取り上げました。ですから今日、またマスペディア 1000 からの話題となると、次の 179番目:リーマンデータ関数 を取り上げるべきなのですが…。
うーむ…今日も四苦八苦したんですよね。
で、結局、私には内容が専門過ぎて扱...
続きを読む | 
閲覧(4032)
11月
26
(日)
カテゴリー
マスペディア 1000
みなさん、おはようございます。時空 解です。
マスペディアもトピックが 1000個あるうちの10分の1、100個目あたりに来るとさすがに内容が難しくなります。難しいと言うよりは高校の数学の授業では扱わない内容になって来ているので、目新しい、と言った方がいいのかも知れませんけどね。
高校時代にも"無理数" の次に "超越数" と言うものもあるよ、とは聞いたことがありますが、その定義に付いては授業で触れる事はなかった...
続きを読む | 
閲覧(6021)