ページのトップにスクロール

Home  >  ブログ

日記一覧

当サイトに登録されている日記一覧

 高度な検索
31件のうち1 - 20件目を表示しています。


[投稿日   ] [タイトル   ] [アクセス数   ]
3月
28 (日)
カテゴリー  数学検定
みなさん、おはようございます。時空 解です。 来たる4月12日の第372回、数学検定の受検証が届きました。 いやぁ今回の受検は緊急事態宣言が解除された時期になるとは言え、まだ新型コロナの予防接種は殆どの方達が受けていませんからね。注意が必要だと思います。 世間は、なんとなくワクチンが出回り出した事実だけで気が緩み始めている気がします。 繰り返しになりますが、ワクチンの予防接種は一部で始まったばかりです。気を付けてね。 そんにことを言っている私ですが、...
コメントあり 2  |  続きを読む |  閲覧(545)
3月
27 (土)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日も数検2級2次に向けて学習をすすめました。「実用数学技能検定要点整理2級」の "第5章 5-1 導関数" です。 この範囲は楽勝だと思っていたのですが、そう甘くはないですね。 「これで正しいだろう」 と思って答え合わせをすると、…あれっ?数値が違う! ( ××; どうも計算間違い、勘違いをやらかします。やっぱり見直しは大切ですね。 それと問題の与式をちゃんと...
コメントあり 4  |  続きを読む |  閲覧(568)
3月
26 (金)
カテゴリー  書籍の感想
皆さんこんにちは、時空 解です。 昨日の夜は、数学検定の学習に一区切りついた (数列) ので、読み掛けていた書籍を読んでいました。「フォン・ノイマンの哲学 人間のフリをした悪魔」です。 第4章:私生活 第5章:第二次大戦と原子爆弾 第4章の私生活から感じるのは、題名の副題になっている "人間のフリをした悪魔" とはずいぶんと違うイメージですね。かなりの紳士だったようすです。それに物理学のそうそうたるメンバーたちと関りを持っていたことを知...
コメントあり 2  |  続きを読む |  閲覧(583)
3月
4 (木)
カテゴリー  夢に向かって
皆さんこんにちは、時空 解です。 4月11日に、第372回 数学検定が実施されます。後1ヶ月と数日後に迫っています。ですから数学の学習に集中したいんですけどね。 でも、日々の生活に追われる中、なかなかそうも行きません。数学を学習するために時間をどう取るか?まずは時間配分の問題もありますが、それに付いては私、実はそれほど問題にしていません。会社が休日で自由な時間があっても、1日中ずっと数学の学習を行う…なんて事が、現状では出来ないからです。 数学...
続きを読む |  閲覧(596)
3月
7 (日)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日はさっそく、会員さんから頂いたコメント (2021年3月5日) にお応えしたいと想います。 コメントで頂いたのは「問題3の解き方」です。その問題3と言うのがこちら。 ・数学検定 準1級 1次:計算技能検定 問題3    数列 { $ a_n $ } の初項から第 $ n $ 項までの和を $ S_n $ とおきます。      $ 3a_n - 2S_n = 3^n  ( n = 1,~2,~3,~…)...
コメントあり 2  |  続きを読む |  閲覧(596)
3月
29 (月)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 「実用数学技能検定要点整理2級」の "第5章 5-1 導関数" に付いて整理してみました。 (1) 導関数を導くための公式 まぁこれは個人的には大丈夫ですが、一応書いておきましょう。    $ \left( x^n \right)’ = nx^{n \ – 1} $   例) $ \left( 2x^3 \right)’ = 2 \cdot 3 x^{3 - 1} = 6...
コメントあり 4  |  続きを読む |  閲覧(598)
3月
30 (火)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 「実用数学技能検定要点整理2級」の "第5章 5-2 導関数の応用" の練習問題4に悩まされていました。 この手の問題、比を利用して解く問題は本当に悩まされます。 まずは問題と答を下記に示しておきます。 この問題に付いては、2年前のブログにも投稿をしています。 ・どこをどう取って変数にするか?p108 練習問題4 いやぁ…自分が投稿したブログなんですが、読み返してみるとずいぶん...
コメントあり 2  |  続きを読む |  閲覧(599)
3月
8 (月)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 数学検定の2級2次検定は、皆さんご存知のように記述式です。 さて、「実用数学技能検定要点整理2級」の p124 の練習問題3にこんな問題とその記述解答 (?) が載っているのですが、 この記述解答をどう思われますか? 特に (2) の記述解答です。 下記の画像をご覧ください。この青い部分が記述解答です。 (1) は良いとして、(2)は特殊な答の導きかただと想いませんか? ポイントは 「$ n= 1,~2,~3,...
コメントあり 4  |  続きを読む |  閲覧(615)
3月
12 (金)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日も数列で苦しんでいます…。 あぁ…微妙に間違えてしまう。例えば下記の問題 ・実用数学技能検定要点整理2級 p130 4 私は $ - ( \sqrt{ k } - \sqrt{ k+1 } ) $ と考えてしまったので × 。 くそおおおおおーーーーーーーっ! キィィィ!!((ヾ(≧皿≦メ)ノ))キィィィ!!  はっ! すみません、取り乱したりして&he...
コメントあり 3  |  続きを読む |  閲覧(615)
3月
18 (木)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日は「実用数学技能検定要点整理2級 (以降、テキスト)」の数列のところ、6-3:漸化式と数学的帰納法 のところを学習していました。 手応えのあるところですね。手応えと言っても個人的な感想ですけどね、高校の時には理解出来なかったところでしたから。( ^^; どうにも苦手意識もあります。 そんな苦手な問題類に、問題文自体にちょっとした間違い (誤植?) があると、何だか真剣に取り組む気も萎えてしまいますよね。 その一例...
コメントあり 3  |  続きを読む |  閲覧(618)
3月
16 (火)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 昨日の疑問が解決しました! お2人の会員さんに感謝を致します。 本当にありがとうございます。45年間この部分があやふやで数列に対して混乱をしていました。一歩前進できました。 m( _ _ )m では、さっそく昨日のブログに修正を加える形で、ガウス少年のやり方でも答えが出せることを確認して行きます。 昨日と同様に「実用数学技能検定要点整理2級」(以後 "テキスト" と表記) の p130 の練習...
コメントあり 4  |  続きを読む |  閲覧(625)
3月
23 (火)
カテゴリー  数学
皆さんこんにちは、時空 解です。 さて、今日は昨日の続きのようなものですが、青チャート式数学Bでは、漸化式を4つのパターンに分類していますね。 ・$ a_{n+1} - a_n = d $    → $ a_n = a_1 + (n-1)d $   …等差数列型 ・$ a_{n+1} = r a_n $     → $ a_n = a_1 r^{n-1} $       …等比数列型 ・$ a_{n+1} = a...
コメントあり 2  |  続きを読む |  閲覧(625)
3月
6 (土)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日の夜に、昨日のブログに頂いたコメントにある問題の、私なりの解答を投稿したいと思います。 ・数学検定 準1級 1次:計算技能検定 問題3    数列 { $ a_n $ } の初項から第 $ n $ 項までの和を $ S_n $ とおきます。      $ 3a_n - 2S_n = 3^n  ( n = 1,~2,~3,~…) $    が成り立つとき、数列 { $ a_n $ } の第6項 $ a_6 $...
コメントあり 2  |  続きを読む |  閲覧(627)
3月
21 (日)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日は以前、3月18日に取り上げた誤植を含んだ問題「実用数学技能検定要点整理2級 (以降、テキスト)」に付いて、再び書いてみます。 今回は誤植ではなく問題の内容に付いての感想です。 まずはその問題を下記に示します。テキスト  p135、応用問題2(2次問題) 初項が $ 1 $ の数列 $ \{a_n \} $ について、初項から第 $ n $ 項までの和 $ S_n $ が、    $ S_n = 3S_{n...
コメントあり 2  |  続きを読む |  閲覧(628)
3月
14 (日)
カテゴリー  数学検定
皆さん、おはようございます。時空 解です。 今日はまだ階差数列の問題に対して、自分の犯している問題点を探っている状態です。 でも、もう「ランチ & 買い物」に出掛ける時間となってしまいました。 すみません、また夜にでもブログを投稿しますね。 とりあえず問題と答を左に示しておきます。 ではでは…。  ...
コメントあり 2  |  続きを読む |  閲覧(630)
3月
13 (土)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日も「実用数学技能検定要点整理2級」(以降、テキストと表記) の 6-2:いろいろな数列の和 の練習問題をやっていました。 そして気が付いてしまいました。 自分は階差数列をイメージでしか理解してなかったことです。_| ̄|○ 下記の問題を解いていて気が付きました。正しい答えが導けない… ・テキスト p130 練習問題 4の (1) 次の数列の第 $ n $ 項を求めなさい。 (1) $ 2,~8,~...
コメントあり 4  |  続きを読む |  閲覧(635)
3月
9 (火)
カテゴリー  マスペディア 1000
皆さんこんにちは、時空 解です。 今日は久々にマスペディア 1000 のトピックからの話題です。 トピック 282 に「ニュートンの3次曲線」が紹介されていました。 ニュートンは $ x^3,~x^2y,~xy^2,~y^3 $ を含む方程式によって定義される曲線である3次曲線に付いて、考察していたそうです。 うーむ…ニュートンって小学生の頃の印象としては物理学者ですけどね。 ここのところ、どんどんと数学者のイメージが増してくるのは私だけで...
コメントあり 4  |  続きを読む |  閲覧(638)
3月
11 (木)
カテゴリー  マスペディア 1000
皆さんこんにちは、時空 解です。 今日もマスペディア 1000 から、トピック 283 を取り上げてみましょう。前回は「ニュートンの3次曲線」をご紹介しましたが、これは平面上の曲線でしたね。 今回は三次元空間における、曲面に関連することです。 曲面の種類によって、名称が付けられているんですね。今回のトピック 283 に目を通してみて、聞いたような聞いたことないような名称が出てまいりました。 「一葉、二葉双曲面?」 「楕円放物面?」 うーむ&hellip...
コメントあり 4  |  続きを読む |  閲覧(651)
3月
5 (金)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日は数検2級2次の検定のために「実用数学技能検定要点整理2級」の第6章:数列に入りました。 うーむ…ややこしい…。 学生の頃は漸化式のところに苦手意識があったものの、等差数列とか等比数列に付いては苦手意識は無かったんですよね。 むしろ等差数列の和の計算などは、かのガウスの逸話がありますのでね。 ・小学校の先生を驚かせたガウスの計算センス まさに数学の面白さを知った計算式として良い印...
コメントあり 2  |  続きを読む |  閲覧(652)
3月
19 (金)
カテゴリー  物理
皆さんこんにちは、時空 解です。 今日はちょっと読み始めた書籍に時間を取られてしまいました。数学の学習をサボってしまいました。うーむ…まずい!  でもその書籍と言うのが「フォン・ノイマンの哲学 人間のフリをした悪魔 高橋晶一郎」 まだ "はじめに" を読んだだけですが驚きました。と言うのも、初めて聞くパラドックスが載っていたからです。 ・ウィグナーの友人のパラドックス このパラドックスの説明は Wikipedia には...
コメントあり 3  |  続きを読む |  閲覧(652)
31件のうち1 - 20件目を表示しています。



メインメニュー
ログイン
ユーザー名:

パスワード:



日記投稿者リスト
カレンダー
月表示
カテゴリー
にほんブログ村リンク