TOP

Home  >  ブログ  >  時空 解

時空 解 さんの日記


 高度な検索
33件のうち1 - 20件目を表示しています。

[投稿日   ] [タイトル   ] [アクセス数   ]
5月
21 (日)
カテゴリー  ゴールに向かって
皆さんこんにちは、時空 解です。 今日は会社がお休みだったんですが、その分プライベートで忙しくしていました。 夜の八時は過ぎてようやく落ち着きました。 さて、数年にわたって自分の手で作っていたキーボードスタンド (パソコンデスク) ですが…。 やっぱり本格的にやらないと望み通りの使いやすいものはできそうにありません。というのも、最近自分がやっている "手作り" というのは使い古しの組み立て用スチールを再利用して出来る範囲の代物...
続きを読む | 閲覧(2940) 
5月
4 (木)
カテゴリー  数学
皆さんこんにちは、時空 解です。 今日も青チャート数学IIの微分法のところの学習を進めていました。 それで思ったのですが、微分法のところでリミット ( limit ) と言う考え方を学ぶんですね…高校時代もそうだったことを今日思い出した次第です。 リミット計算と言うのもなかなか面白かった記憶が蘇りますが、今日初見で解こうと思った重要例題197 (改訂版では190) は、独学ではなかなか理解が進まない問題だったでしょう。青チャート数学の解説に目を通す...
続きを読む | 閲覧(3569) 
5月
29 (月)
カテゴリー  数学
皆さんこんにちは、時空 解です。 理数系の書籍を見ていて、時々見かけたことがあった "変曲点" と言う単語…。 この変曲点って、どんな点なんだろうなぁと頭の片隅で思っていたものです。 あっ!   …はい、そのとおり。そう思ったのなら調べればいいんですよね。 それで今、調べてみました。 まずは Wikipedia に載っていました。 ・変曲点  (Wikipedia へリンク) もしかしたら、...
続きを読む | 閲覧(3456) 
5月
27 (土)
カテゴリー  ゴールに向かって
皆さんこんにちは、時空 解です。 せっかく数学の学習をしているのに、現代物理学の標準理論の理解にのみ、その成果を生かすのみではもったいないのは当たり前ですよね。 と言っても "生かす" までもなく、数学の実力が身につけばおのずと、日々の生活にもそれが生きてくると言うものでしょうが…。 でも積極的に使おうとしている人と、特定の事にのみ利用できればいいや、という人とでは違いが出てくるのも確かでしょう。 今まで私は後者の心境でした。...
続きを読む | 閲覧(2782) 
5月
16 (火)
カテゴリー  未分類
皆さんこんにちは、時空 解です。 今日は理数系の話とは離れますが、ご勘弁を。m( _ _ )m ずっと気のなっていたことがあったんです。これは私が小学五年生の時のお話です。 歳のせいか最近、よく昔のことを思い出しています。 まぁ基本的に気持ちは "後ろ向き" な方なので以前のことをクヨクヨ思い出すほうですが…それはともかく。 今日の朝、突然に思いついたことがありました。それは 父の思い出の品 についてのことで...
続きを読む | 閲覧(5195) 
5月
9 (火)
カテゴリー  数学検定
皆さんこんにちは、時空 解です。 今日は朝から、5月2日 初版発行の「実用数学技能検定 要点整理 数学検定2級」を自炊していました。 以前の要点整理と内容なんてそれほど変わってはいないだろうと思っていたんですが… そんなことはない、相当な変更がかかっていました! 出版に気が付いた時、直ぐに購入に踏み切ってよかったです。( ^^; 以前の「実用数学技能検定 要点整理 数学検定2級」と比べると、内容が十分に充実している感じがしますね。 で...
続きを読む | 閲覧(2957) 
5月
23 (火)
カテゴリー  数学
皆さんこんにちは、時空 解です。 今日は数研出版さんの「デジタル副教材:青チャート数学」の公式集の中に、表題の公式があったので証明を確認してみました。 数研出版さんのデジタル副教材の中にある証明は、ある程度分かるのですが… うーむ… 同じ証明が載っている、参考になるサイトを下記に示します。 ・sinx/xの極限は?x→0とx→∞の場合を証明付きで東大医学部生が教えます! いわゆる &quo...
続きを読む | 閲覧(3284) 
5月
11 (木)
カテゴリー  数学検定
  皆さんこんにちは、時空 解です。 今日は数学検定のためのテキスト「実用数学技能検定 要点整理 数学検定2級」について書いてみたいと思います。 結論から書きますと、新しく出版された ・2023年版_実用数学技能検定 要点整理 数学検定2級 購入すべし! です。 まぁ数学の実力を付けたいのであれば個人的には 「青チャート数学」 を学習して行くことが王道だとも思いますが。 でも、今年の5月に発売された 「2023年版_実用数学...
続きを読む | 閲覧(5294) 
5月
8 (月)
カテゴリー  ゴールに向かって
皆さんこんにちは、時空 解です。 さっそく今日の朝に「実用数学技能検定 要点整理 数学検定2級」を Amazon より購入いたしました。 まぁ内容はそれほど変わってはいないと思われますけどね。( ^^; でも、なるべくなら最新の書籍に対応させてユーチューブチャンネル「数検の必勝アイテム」の動画を作成したいですからね。 そういえばチャンネル登録者数は、今日の時点で228人になったところです。最後に動画をアップしたのが3月8日だったのに、それ以降も登録を頂き感...
続きを読む | 閲覧(2540) 
5月
7 (日)
カテゴリー  書籍の感想
皆さんこんにちは、時空 解です。 今回のブログは、今日2回目の投稿となります。 まぁ大した内容の記事ではありません。表題にも書いたとおり 新しい 「実用数学技能検定 要点整理 数学検定2級」 が、今月初めに出版されたようです。 数学検定協会のオフィシャルサイトに関連書籍というページがあります。 ・TOP > 学習サポート > 関連書籍 > 実用数学技能検定 要点整理 上記にリンクを貼ってありますので、参考にしてみてください...
続きを読む | 閲覧(2720) 
5月
1 (月)
カテゴリー  数学
皆さんこんにちは、時空 解です。 数学検定の受検にそなえて 「青チャート数学」 を学習していますが、やっぱり私は高校時代に入ってほとんど数学の学習をしてなかったですね。 表題にも書いたとおり、「青チャート数学II」指数関数と対数関数の章の最後の関連発展問題… 解説を読んで、やっと解法が理解できるところまではきましたが、でも問題がテストに出題されたら解ける自信はいまだにありません。_| ̄|○ 例えば演習例題194などを視聴してみてください。...
続きを読む | 閲覧(2850) 
5月
15 (月)
カテゴリー  数学
皆さんこんにちは、時空 解です。 今日は微分法の法線の問題を解いていたんですが、そこで $ x^3 -3x -2 = 0 $ を因数分解する必要が出てきました。 因数分解をする必要があるのは設問 (2) ですので、その解説動画へリンクを貼っておきます。 ・基本例題206 (2) $ x^3 -3x -2 = 0 $  上記の3次方程式は、例えば $ x $ に $ -1 $ を代入してみると成立しますよね。 ですから因数分解するときに因数とし...
続きを読む | 閲覧(3937) 
5月
26 (金)
カテゴリー  ゴールに向かって
皆さんこんにちは、時空 解です。 今日はちょっと弱気になっています。 数学の学習を続けていると、数学検定の2級手前でうろうろしている私ですが…。 数学検定の1級を取得できる実力がついたとしても、それからも大変な学習が必要な見通しを感じます。 うーむ… それにもまして、やっぱり年齢と言う現実が身に迫っているのを感じます。 まだ自分は年老いた気はしてないつもりですけどね… でも、数式を書いたり記述式の問題...
続きを読む | 閲覧(3046) 
5月
2 (火)
カテゴリー  数学
皆さんこんにちは、時空 解です。 今日は「青チャート数学II」の第6章 微分法に進みました。 微積分に付いては分かっているつもりの私でしたが、微分法の最初の基本例題を解いてみて自分のいい加減さ (?) うっかり加減を確認できました。 確認できなかったほうが幸せでしたけどね。( ^^; ショックを受けたんです。 青チャート数学の各章、節の初めに載っている基本事項に目を通さずに微分法の最初の基本例題195 (改訂版では188) を、やってみたら… ...
続きを読む | 閲覧(2851) 
5月
3 (水)
カテゴリー  パソコンソフト関連
皆さんこんにちは、時空 解です。 何かと便利に利用している数研出版さんのデジタル副教材、「青チャート数学」ですが、以前に数研出版さんの購入手続きサイトにバグが有ったことをお伝えしましたよね。 (下記ブログ記事参照) ・デジタル副教材の「学習者用デジタル版 チャート式 基礎からの数学I+A」使い込めばとても愛着が沸きそうです ・ネット社会は便利だけど…操作が大変 ようするに、私の損失分 4290円 は 「60日後に数研出版さんの代行業者さん...
続きを読む | 閲覧(2479) 
5月
25 (木)
カテゴリー  数学
皆さんこんにちは、時空 解です。 今日は青チャート数学IIの微分法の中の "関数の増減と極大・極小" について学習をしていたのですが、その時にちょっとびっくりしました。 うーむ…そうなのか…。 グラフにおいて「極値」と呼べるのは定義域の前後で微分係数が別符号でないといけないのね…。 例えば $ x = a $ のところでは微分係数が $ f'(a) = 0 $ であっても、その前後が ++ ...
続きを読む | 閲覧(3596) 
5月
30 (火)
カテゴリー  ゴールに向かって
皆さんこんにちは、時空 解です。 今日は偶然、下記の動画を見つけました。 ・The probability is the area / 確率は面積である Associate Professor Makiko Sasada, Mathematics この動画は ・東京大学大学院理学系研究科・理学部 School of Science, The University of Tokyo と言うチャンネルの中にある一つです。 チャンネル登録者数は ...
続きを読む | 閲覧(2598) 
5月
24 (水)
カテゴリー  数学
皆さんこんにちは、時空 解です。 ラジアン単位に慣れるにはどうしたら良いかなぁと考えていたんですが、簡単なことでした。 ラジアン単位を教えてもらう中学・高校の頃の心境に戻ればいいんですよね。 今まではラジアン単位と言うものが自分にとっては複雑なものに思えていたんです。 その理由は、例えば昨日のブログにも例を挙げたとおり 極限値の公式 $ \displaystyle \lim_{ x \to 0 } \frac{ \sin x }{ x } = 1 $ ...
続きを読む | 閲覧(3608) 
5月
13 (土)
カテゴリー  数学
皆さんこんにちは、時空 解です。 今日は弧度法について書いてみたいと思います。 今日は公式集で三角関数の弧度法に付いての公式を見ていたんです。 そしたらこんな問題が出てきました。 半径 $ 1 $ の円では 長さ $ 1 $ の孤に対する中心角の大きさが $ 1 $ ラジアンである。 $ 180^\circ = $ $ \pi $ ラジアン、$ 1 $ ラジアン $ = $ $ \left( \displaystyle \frac{ 180 }{ ...
続きを読む | 閲覧(4039) 
5月
5 (金)
カテゴリー  未分類
皆さんこんにちは、時空 解です。 ゴールデンウイークも半ば過ぎましたが、皆さんはいかがお過ごしでしょうか? 私の勤めている職場は、ゴールデンウイークこそ稼ぎ時ですので連休にはならないんです。 でも、たまたま一昨日・昨日と奇跡的にお休みを頂いていたんです、ラッキーと言ったところです。 まぁでも今日は出勤なんですが… しかも! 実は今日は檀家さんのお掃除の日なんです。草取りが毎月6日にあるのですが、それはどうらや業者さんにお願いして済ませ...
続きを読む | 閲覧(2748) 
33件のうち1 - 20件目を表示しています。

 
メインメニュー
ログイン
ユーザー名:

パスワード:



日記投稿者リスト
カレンダー
月表示
カテゴリー
にほんブログ村リンク